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1 (18.03 \ 18.06) ASE Reference

This reference is intended as a condensed reference to material in 18.03 not covered in
18.06 (although I do review some stuff from 18.06). This is mainly intended as a resource
for passing the ASE, so I’m intentionally brief and sometimes emphasize practice over
theory. I’ve divided these notes into two sections: the first which covers essential material
for the exam, and the second which covers other material necessary for the packet, but
unlikely to show up on the exam.

Before we get into the actual math, here are some tips

• From my experience with practice exams and the actual ASE (IAP 2025), the follow-
ing problems will almost certainly occur:

– Analyzing a (possibly nonlinear) DE with isoclines

– Solving an equation of the form zn + k = 0 where n ⩾ 3 (roots of unity)

– Sketching the phase line, phase portrait, and or bifurcation diagram of some
autonomous equation

– Solving a "miscellaneous" DE (probably with integrating factors or standard
calculus)

– Expressing a sum of a sine and cosine or a "complex" complex number as a
simple sine/cosine with a phase shift.

– Solving an inhomogeneous linear DE with constant coefficients

– Analyzing the gain of a damped linear system

– Using the Fourier series to solve a DE

– Finding the Fourier series of some simple periodic function

– Solving a 2x2 system of linear differential equations with constant coefficients
(eigenvectors, eigenvalues, phase portrait)

– Finding the critical points of some nonlinear system and analyzing their stabil-
ity with linearization

– Using separation of variables to solve the heat equation

• For more thorough notes, the official course notes (https://math.mit.edu/~jorloff/
suppnotes/suppnotes03/) and Professor Jörn Dunkel’s notes (https://math.mit.edu/
~dunkel/Teach/18.03/2018_CourseNotes.pdf) are good.

• There are a few practice exams at https://www.studocu.com/en-us/course/massachusetts-
institute-of-technology/differential-equations/744206

• However you acquire the textbook, make sure to get a copy of Elementary Differ-
ential Equations with Boundary Value Problems, which has the correct page numbers
and material on Fourier series.
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2 Essential Material

2.1 Definitions

ordinary DE does not contain partial derivatives.

nth-order DE contains up to the nth derivative of its variables.

IVP initial value problem.

autonomous DEs of the form dy
dx = f(y). For example, in dy

dx = y2 + 2y+ 1, x does not
appear on the RHS.

linear nth order DE can be expressed in the form
∑n

0 An(x)y
(n) = f(x); the coefficients of

the y(i) are all functions solely of x. A linear DE is said to be homogenous if f(x) = 0.

complementary equation The complementary equation of an inhomogeneous linear DE∑n
0 An(x)y

(n) = f(x) is simply the equation
∑n

0 An(x)y
(n) = 0, i.e. set the right

hand side to 0 instead of some function of x.

2.2 Separable ODEs

If the DE can be written in the form:

g(y)y ′ = f(x)

Integrating both sides and solving for y solves the equation.

2.3 Integrating Factors

If the DE can be written in the form:

y ′ + P(x)y = Q(x)

Multiply both sides of the equation by the integrating factor e
∫
P(x)dx to yield:

e
∫
P(x)dxy ′ + e

∫
P(x)dxP(x)y = e

∫
P(x)dxQ(x)

Since left side is the derivative of e
∫
P(x)dxy (Product Rule), integrating both sides and

solving for y solves the equation.

2.4 Existence and Uniqueness For First-Order DEs

For an IVP:

y ′ = f(x,y), y(x0) = y0

if f(x,y) and fy(x,y) are continuous on some rectangle that contains (x0,y0), then there
exists h such that the IVP has a unique solution on (x0 − h, x0 + h). Furthermore, dis-
tinct solutions to a well-behaved DE like this cannot intersect (as that would mean f(x,y)
would have two different values for a single (x,y)).
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2.5 Isoclines

An isocline for a DE y ′ = f(x,y) is a curve of the form f(x,y) = c. A nullcline is an isocline
with c = 0. We can often get the portrait of the solutions of a DE by drawing a slope field
using a few values of c.

2.6 Autonomous DEs and Bifurcation

Recall that an autonomous DE has the form:
dx

dt
= f(x) (1)

that is, x ′ can be expressed solely as a function of x. Our task will mainly be to determine
properties of solutions of these equations, rather than to find actual solutions.

2.6.1 Critical Points

Firstly, notice that each solution c to f(x) = 0 gives us a constant solution to (1): x = c.
These c values are called critical points. A critical point is stable if, loosely speaking, a
solution near the critical point stays near the critical point.

Let’s look at an example. Suppose we have the autonomous DE (1E-1a from the home-
work packet):

x ′ = x2 + 2x (2)

We can immediately spot two critical points x = −2 and x = 0, which solve x2 + 2x = 0.
Now, let’s examine their stability using a phase diagram:

-2 0

Firstly, the two critical points are marked on the phase diagram. Secondly, the sign of x ′

is also marked using arrows showing the “direction of motion” of x. This diagram tells
us that when x < −2 or x > 0, x ′ is positive. When −2 < x < 0, x ′ is negative. This is
enough information to determine stability of the critical points. Notice that both arrows
adjacent to x = −2 are pointing towards it. This means −2 is a stable critical point. If x
is greater than −2 (but less than 0), x ′ is negative, so x is going to decrease towards −2.
Meanwhile, if x < −2, the x ′ is positive, so x is going to increase towards −2. On the other
hand, both arrows adjacent to x = 0 are pointing away, which means it is unstable. The
last case is where both arrows adjacent to a critical point are pointing the same way; this
is called semistability. If you start on the correct side of the critical point, you’ll end up
there, otherwise, you’ll be taken away from it.

2.6.2 Bifurcation

Now, we’ll consider families of autonomous DEs, rather than a single DE, at a time. Here
is a family of DEs parametrized by a number r (8A-1 from the homework packet):

P ′ = −P3 + 12P2 − 36P+ r
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We want to figure out how the number and stability of critical points depends on the
parameter r. Our critical points are defined as P values that cause P ′ to equal 0, so they
are given by r = −P3 + 12P2 − 36P. If we plot r vs. P, we now have what is called a
bifurcation diagram (one that I brutally ripped out the homework packet):

This diagram has r on the horizontal axis, and the critical points of the DE corresponding
to the current r on the vertical axis. Thus, we can see that when r is 0, there is a stable
critical point at P = 0, and a semistable critical point at P = 6. There are also other critical
points for higher r values.

Note that the curve divides the plan into subsections. In any section, the direction of the
arrows is always the same. This is true for any bifurcation diagram.

2.7 Differential Operators

2.7.1 Definition

Suppose we have a polynomial p. We call p “applied” to the derivative operator D, p(D),
a differential operator. Here’s an example:

p(x) = x2 + 2x+ 1

p(D) = D2 + 2D+ 1

p(D)(eαx) = α2eαx + 2αeαx + 1

These operators p(D) have some nice properties (which all basically arise from the linear-
ity of D). For sufficiently differentiable functions u:

(p(D) + q(D))u = p(D)u+ q(D)u

p(D)(c1u1 + c2u2) = p(D)c1u1 + p(D)c2u2 Linearity
(g(D)h(D))u = g(D)(h(D))u Multiplication

p(D)eαx = p(α)eαx Substitution
p(D)eαxu = eαxp(D+α)u Exponential Shift

The last identity, called the Exponential-Shift Rule, can be shown by induction on D,D1,D2,
. . . , Dn, and the general result follows from linearity of D.
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2.7.2 Solving Homogenous Linear DEs with Constant Coefficients

Suppose our equation takes the form:

p(D)x = 0

Guessing y = eαx and applying the Substitution Rule quickly yields a general solution:

p(D)eαx ⇐⇒ p(a)eαx = 0 ⇐⇒ p(a) = 0

So we can see that roots of the characteristic equation directly yield solutions. Suppose we
have a repeated root α, with multiplicity k. Then we can write our characteristic equation
as:

p(x) = r(x)(x−α)k

with r(x) denoting the “rest” of the characteristic equation. Now, we can easily see that
any xieαx is a solution, for i < k:

p(D)xieαx = r(D)(D−α)kxieαx

= r(D)eαxDkxi by the Exponential Shift Rule

= 0 since Dkxi is 0 if i < k

2.7.3 Solving Inhomogenous Linear DEs with Constant Coefficients

Suppose p has degree n and our DE takes the form:

p(D)y = f(x) (3)

Based on f(x), we can guess a solution then try to solve algebraically for particular coef-
ficients. We guess a linear combination of f(x) and its first n derivatives. For example, if
f(x) = 3x+ 2, we would guess the function Ax+ B. If f(x) = xex and n > 1, we would
guess Axex +Bex because the derivative of xex has an ex term in it.

One small hiccup is that our trial solution satisfies the complementary equation of (3), it
will of course never solve (3) since we’ll just get 0. The fix is to multiply the trial solution
by xs where s is the smallest integer so that no term in our new trial solution is a multiple
of a term in the solution to the complementary equation of (3).

2.7.4 An Important Case: eαx

An important case of inhomogenous linear DE is when f(x) = eαx.

p(D)y = eαx

Then this equation has particular solution yp:

yp =
eαx

p(a)
, p(a) ̸= 0
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If p(a) is equal to 0, with multiplicity s, then,

yp =
xseαx

p(s)(a)

Note that the first equation is a special case of the second, with s = 0.

2.8 Gain and Resonance

Let’s consider a driven spring-block-dashpot system modelled by the usual DE; suppose
the driving force is F0 cosωt:

mx ′′ + bx ′ + kx = F0 cosωt (4)

We find a particular solution using the operator method on the equation mx ′′+bx ′+kx =
F0e

iωt and taking the real part 1 (assuming ω is not a root of the characteristic equation
of (4)):

x̃p =
F0e

iωt

m(iω)2 + b(iω) + k

=
F0(cos(ωt) + i sin(ωt))

−mω2 + ibω+ k

=
F0(cos(ωt) + i sin(ωt))

−mω2 + ibω+ k
· −mω2 − ibω+ k

−mω2 − ibω+ k

=
F0((k−mω2) cos(ωt) + bω sin(ωt)) − iF0(bω cos(ωt) + (k−mω2) sin(ωt))

(k−mω2)2 + b2ω2

Now, taking the real part, we have:

xp = Re x̃p =
F0((k−mω2) cos(ωt) + bω sin(ωt))

(k−mω2)2 + b2ω2 (5)

Let’s define ϕ = tan−1
(

bω
k−mω2

)
. Thus, cosϕ = k−mω2√

(k−mω2)2+b2ω2
and sinϕ = bω√

(k−mω2)2+b2ω2
.

Substituting these into (5), we have:

F0
√

(k−mω2)2 + b2ω2(cosϕ cos(ωt) + sinϕ sin(ωt))

(k−mω2)2 + b2ω2

Applying cosα + β = cosα cosβ − sinα sinβ, we finally arrive at the solution to our
original equation (yay!):

xp =
F0 cos(ωt−ϕ)√

(k−mω2)2 + b2ω2

1If f(x) where to take the form F0 sinωt, we would instead take the imaginary part
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The amplitude gain of the system is defined as the ratio of the output amplitude to the
input amplitude:

F0√
(k−mω2)2 + b2ω2

/
F0 =

1√
(k−mω2)2 + b2ω2

The phase lag of the system is just ϕ = tan−1
(

bω
k−mω2

)
.

Notice that if we define p(x) = mx2 + bx+ k, the complex gain is defined as 1
p(iω) . Then

amplitude gain is just the norm of this complex number, and the phase lag is just the
argument.

2.9 Phase Portraits

The signs/complexity of the eigenvalues of a 2-by-2 system of linear DEs give us a general
picture of of trajectories the system can take. Since detA = λ1λ2 and trA = λ1 + λ2, the
characteristic polynomial can be written as:

x2 − (trA)x+ detA = 0

From the quadratic formula, we have:

x =
trA±

√
(trA)2 − 4 detA

2

Thus, we have complex roots if (trA)2

4 < detA. In other words, if we graph the trA versus

detA, matrices above the parabola y =
(trA)2

4 will have complex roots. Trajectories in
the northwest quadrant, which have negative trace and positive determinant (i.e, both
eigenvalues have negative real part), are called stable, as all trajectories eventually end at
0.

Let’s go through all the trace-determinant combinations, with their associate eigenvalues:

complex oscillation

real part zero detA = 0, detA >
(trA)2

4 : ellipses

real part positive detA > 0, detA >
(trA)2

4 : unstable spirals

real part negative detA < 0, detA >
(trA)2

4 : stable spirals

2 real eigenvalues no oscillation

one positive, one negative detA < 0: hyperbolas, ending parallel to larger eigen-
value

two positive trA > 0, detA <
(trA)2

4 : unstable parabolas that extend parallel to
larger eigenvalue’s eigenvector

8
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two negative trA < 0, detA <
(trA)2

4 : stable parabolas that go to zero parallel to
larger eigenvalue’s eigenvector

two repeated positive trA > 0, detA =
(trA)2

4 : unstable star, any direction is possi-
ble as a linear combination of the two eigenvectors, and both components grow
at same rate

two repeated negative trA < 0, detA =
(trA)2

4 : stable star, any direction is possible
as a linear combination of the two eigenvectors, and both components shrink
at same rate

one positive, one zero trA > 0, detA = 0: unstable critical line (comb)

one negative, one zero trA < 0, detA = 0: stable critical line (comb)

2.10 Nonlinear Systems

To analyze an autonomous nonlinear system:

x ′ = f(x,y)
y ′ = g(x,y)

at a point (x0,y0), we can approximate it by:[
x ′

y ′

]
= J(x0,y0)

[
x

y

]
Where J is the Jacobian matrix: [

fx fy
gx gy

]
evaluated at (x0,y0). Note that for a single equation u ′ = f(x) we can apply the same
method. We just get x ′ = f ′(x)x, since the Jacobian has just one element.

If there are pure complex eigenvalues, zero eigenvalues, or repeated eigenvalues (basi-
cally if anything is weird), we can’t use this method to approximate the system because it
is not structurally stable.

2.10.1 Structural Stability

A system is structurally stable if small changes to it’s parameters don’t change the geom-
etry or stability of its critical points (tweaking coefficients doesn’t make drastic changes).
Only (regular) spirals, saddles, and nodes are stable.
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2.10.2 Population Dynamics

Let x be the population of some prey species, and y the population of some predator
species. Assuming no predators, the prey grows naturally with a fixed growth rate:

x ′ = ax

Conversely, without prey, the predators decline at a fixed loss rate:

y ′ = −by

In each other’s presence, we assume the two species interact with rate xy, with each
encounter harming the prey by p, and benefitting the predators by q. Hence, we have:

x ′ = ax− pxy

y ′ = −by+ qxy

Writing these two equations like so:

x ′ = x(a− py)

y ′ = y(−b+ qx)

it is easy to see that there are two critical points: (0, 0) (mutual extinction), and
(
b
q , ap

)
.

2.11 Fourier Series

The Fourier coefficients of a 2π-periodic function f are:

a0 =
1
π

∫π
−π

f(t)dt

an =
1
π

∫π
−π

f(t) cosntdt

bn =
1
π

∫π
−π

f(t) sinntdt

f’s full Fourier series is:

a0

2
+

∞∑
1

an cosnt+
∞∑
1

bn sinnt

2.11.1 Arbitrary Period

Suppose we have a piecewise continuous function f(t) with period P = 2L. Then if we
“stretch” the function by P

2π , we’ll get a version of f with period 2π. More concretely, let’s
define the function:

g (t) = f

(
P

2π
t

)
= f

(
2L
2π

t

)
= f

(
L

π
t

)

10
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A quick check that g has period 2π:

g(t+ 2π) = f

(
L

π
(t+ 2π)

)
= f

(
L

π
t+

(
2Lπ
π

))
= f

(
L

π
t+ 2L

)
= f

(
L

π
t

)
= g(t)

As usual, the Fourier coefficients of g are:

a0 =
1
π

∫π
−π

g(t)dt

an =
1
π

∫π
−π

g(t) cosntdt

bn =
1
π

∫π
−π

g(t) sinntdt

We can now retrieve the Fourier coefficients for f(t) using the substitution t = πt ′

L , which
means:

dt =
π

L
dt ′

g

(
πt ′

L

)
= f

(
L

π

πt ′

L

)
= f

(
t ′
)

Hence:

a0 =
1
π

∫πL
π

−πL
π

g
(π
L
t ′
) π

L
dt ′ =

1
L

∫L
−L

f(t ′)dt ′

Likewise:

an =
1
L

∫L
−L

f(t ′) cos
nπt ′

L
dt ′

bn =
1
L

∫L
−L

f(t ′) sin
nπt ′

L
dt ′

2.11.2 Even/Odd Extensions

Recall that if f is even, then: ∫L
−L

f(t)dt = 2
∫L

0
f(t)dt

Conversely, if f is odd ∫L
−L

f(t)dt = 0
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Also, recall that the produce of two odd or even function is even, while the product of an
even and odd function is odd. These properties will be used to calculate Fourier coeffi-
cients for an extended function f. Suppose f is defined over (0,L). To make it periodic
with period 2L, two common ways to extend f to (−L, 0) are to use f(−t) = f(t) (even
extension) or f(−t) = −f(t) (odd extension).

The even extension has Fourier cosine series:

a0 =
1
L

∫L
−L

f(t)dt =
2
L

∫L
0
f(t)dt

an =
1
L

∫L
−L

f(t) cos
πnt

L
dt =

2
L

∫L
0
f(t) cos

πnt

L
dt

bn = 0

The odd extension has Fourier sine series:

a0 = 0
an = 0

bn =
1
L

∫L
−L

f(t) sin
πnt

L
dt =

2
L

∫L
0
f(t) sin

πnt

L
dt

2.11.3 Using Fourier Series to Solve DEs

Suppose f is even and we have a DE of the form:

x ′′ + kx = f(t) (6)

Let’s look for a periodic solution x =
∑∞

0 An cosnt. Plugging this and the cosine series
for f in, we have:

−n2
∞∑
0

An cosnt+ k

∞∑
0

An cosnt =
∞∑
0

an cosnt

Matching like terms with like terms, we get:

An =
an

k−n2

which gives us the Fourier coefficients of the solution to (6).

Note that if k is positive (perhaps we might suggestively then write k = ω2), the solutions
the complementary equation of (6) take the form A cosωt+B sinωt. If there is a term in
the Fourier series solution with n close to ω, this is called near resonance. Looking at
this particular An, we can see that k−n2 will be very small, so the term will have a large
magnitude, which makes intuitive sense.

If f(t) is odd, we can basically do the same thing, except with a sine series for f(t).
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2.12 The Heat Equation

Suppose we have a bar of length L. The Heat Equation for the bar is given by:

∂u

∂t
= k

∂2u

∂x2

with initial conditions:

u(x, 0) = u0(x)

and boundary conditions:

u(0, t) = T0, u(L, t) = TL

One way to solve the equation is to look for solutions of the form u(x, t) = v(x)w(t), also
known as separation of variables. Plugging this trial solution in, we get

ẇ(t)v(x) = kv ′′(x)w(t)

ẇ(t)

w(t)
= k

v ′′(x)

v(x)

Let’s call the quantity on either side of the last equation c(x, t). Notice that ∂c
∂x = ∂

∂x
ẇ(t)
w(t) = 0

and ∂c
∂t =

∂
∂tk

v ′′(x)
v(x) = 0, so c(x, t) must just be a constant, which I’ll henceforth call c. Thus,

we now have:

c = k
v ′′(x)

v(x)

Plugging in a guess vn(x) = sinnx 2, we get:

c = k
−n2 sinnx

sinnx
= −kn2

Now, we can solve for a corresponding wn(t) by using our c value:

ẇ(t)

w(t)
= −kn2 =⇒ ẇ(t) = −kn2w(t) =⇒ w(t) = e−kn2t

Thus we have found a family of solutions to the Heat Equation: un(x, t) = e−kn2t sinnx

(un(x, t) = e−kn2t cosnx also works). Using superposition and the Fourier coefficients of
u0(x), a0, an, bn, we get the full solution to the Heat Equation:

u(x, t) =
a0

2
+

∞∑
1

ane
−kn2t cosnx+

∞∑
1

bne
−kn2t sinnx

2Your “guess” should obey the boundary conditions; sometimes this might mean using vn(x) = cosnx

13
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And we can see easily that this solution obeys the boundary conditions:

u0(x) = u(x, 0) =
a0

2
+

∞∑
1

ane
−kn2(0) cosnx+

∞∑
1

bne
−kn2(0) sinnx

=
a0

2
+

∞∑
1

an cosnx+
∞∑
1

bn sinnx

3 Supplementary Content

3.1 Euler’s Method

3.1.1 Classic Basic Method

Suppose we have an DE that is not exactly solvable of the form:

y ′ = f(x,y)

Using step size h and starting at (x0,y0), we generate a new approximated point in the
solution using the following rule:

xn+1 = xn + h

yn+1 = yn + h · f(xn,yn)

3.1.2 Improved Euler’s Method

We now use the update rule:

k1 = f(xn,yn)

un+1 = yn + hk1

k2 = f(xn+1,un+1)

yn+1 = yn +
1
2
h(k1 + k2)

In other words, we use the average slope on the interval [xn, xn+1] to create our new yn+1

3.2 Existence and Uniqueness For Linear DEs

Suppose we have a linear DE of the form:

y ′′ + p(x)y ′ + q(x)y = f(x)

If p, q, and f are continuous an open interval I, then for any a ∈ I, b1, b2 such that
y(a) = b1 and y ′(a) = b2, , there exists a unique solution over the entire interval.

14
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3.3 Wronskian

The Wronskian of two functions f and g is defined as the determinant:∣∣∣∣ f g

f ′ g ′

∣∣∣∣
Note that if f and g are linearly dependent (constant multiples of each other), the Wron-
skian is 0 everywhere. Furthermore, if our equation takes the familiar form:

y ′′ + p(x)y ′ + q(x)y = f(x)

Then two solutions y1 and y2 on an interval I have Wronskian 0 everywhere if linearly
dependent, and nonzero Wronskian everywhere if linearly independent.

3.4 Damped Simple Harmonic Motion

Starting with the standard equation for SHM:

mx ′′ + cx ′ + kx = 0

Rewrite with p = c
2m > 0 and ω0 =

√
k
m (the undamped frequency):

x ′′ + 2px ′ +ω0
2x = 0

Then the characteristic equation has roots:

r1, r2 = −p±
√
p2 −ω02

whose real/complex-ness depend on the sign of:

p2 −ω0
2 =

c2 − 4km
4m2

We call ccr =
√

4km the critical damping, and have three cases based on its relation with
the actual damping factor c:
x(t) = c1e

r1t + c1e
r2t, if ccr > c (overdamping)

x(t) = (c1 + c2x)e
−pt, if ccr = c (critical damping)

x(t) = e−pt (A cosω1t+B sinω1t) where ω1 = i
√

ω2
0 − p2, if ccr < c (underdamping)

This condition due to ccr is essentially just looking at the discriminant of the characteristic
equation. The normal intuition applies. For example, if the discriminant is negative, we
have complex roots and we would expect oscillation.
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3.5 Systems of Linear DEs

Suppose we have a high-order linear differential equation:

any
(n) + an−1y

(n−1) + . . .a1y
(1) + a0y = f(x)

We can introduce new variables

y1 = y ′

y2 = y ′
1

. . .
yn−1 = y ′

n−2

to make this a system of first order differential equations:

any
′
n−1 + an−1yn−1 + . . .a1y1 + a0y = f(x)

Now, we have n− 1 equations, and n− 1 variables, which we can solve using a method
like elimination (or numerically in practice).

3.5.1 Elimination

Elimination generally involves writing one equation in terms of another, producing an
equation of higher degree but with fewer variables. For example, consider the system
(4B-3 in the IAP 2025 homework packet):

x ′ = x+ y

y ′ = 4x+ y

Notice that we can rewrite y = x ′ − x and y ′ = x ′′ − x. Substituting these into the second
equation, we get:

x ′′ − x ′ = 4x+ (x ′ − x)

x ′′ − 2x ′ − 3x = 0

which we can solve via the usual means.

3.5.2 Decoupling

Suppose we have a linear DE with constant coefficients of the form:

x ′ = Ax

and A is diagonalizable. This means write the system a little more simply. Applying the
diagonalization:

x ′ = SΛS−1x

S−1x ′ = S−1SΛS−1x

S−1x ′ = ΛS−1x

(S−1x) ′ = Λ(S−1x)

16
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Let’s call S−1x, the representation of x in the eigenbasis, y. Then we can say:

y ′ = Λy

3.6 Another way of computing eAt

Recall from 18.06 that eAtx(0) is the solution to the system of DEs:

x ′ = Ax

We can also write the solution as some linear combination of the eigenfunctions (the first
way we solved this equation). Suppose we have eigenbasis v1, . . . , vn with λ1, . . . , λn.
Then the general solution is c1v1e

λ1t, . . . , cnvneλnt. But where do these ci’s come from?
The initial conditions of course. As a tool, we’ll use what’s called a Fundamental Matrix
of our system:

Φ(t) =
[
v1e

λ1t · · · vne
λnt

]
Note that since each column of this matrix is a solution to x ′ = Ax, the entire matrix itself
also obeys it, i.e. Φ ′(t) = AΦ(t). Now, if we put the cis in a column vector c, we can more
tersely write the general solution as:

Φ(t)c

The utility of this comes when we set t = 0:

Φ(0)c = x(0)

c = Φ(0)−1x(0)

All we’re doing here is extracting the actual coefficients for writing x(0) using the eigen-
basis; think of Φ(t)−1 like a change of basis matrix. This allows us to write Φ(t)c as
Φ(t)Φ(0)−1x(0). Since this is just another way of writing the general solution to our equa-
tion, we have

eAtx(0) = Φ(t)Φ(0)−1x(0)

eAt = Φ(t)Φ(0)−1

which gives us another way of computing eAt.

3.7 Inhomogeneous Linear Systems (Exponential Response Formula)

Let’s start again with a linear system, but this time it’s not homogenous:

x ′ = Ax + eαtK

17
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where K is a vector of constants. Like before, we’ll guess a particular solution eαtv. Plug-
ging this in, we get:

αeαtv = Aeαtv + eαtK
αv = Av + K

αv −Av = K
(αI−A)v = K

v = (αI−A)−1K

Once again, if the inhomogeneous term has the form cosαt or sinαt, we can replace it
with eαit and then take the real/complex part of the solution we get.

3.7.1 Variation of Parameters

More generally, suppose we have a problem:

x ′ = Ax + q(t) (7)

The general solution to the homogenous equation is Φ(t)c. Let’s replace c with a vector
of functions u(t). In other words, lets let our cis from the previous part be functions
instead, which we can solve for. Therefore, our new solution is going to take the form
x = Φ(t)u(t). Plugging this into (7) we have:

(Φ(t)u(t)) ′ = A(Φ(t)u(t)) + q(t)
AΦ(t)u(t) +Φ(t)u ′(t) = AΦ(t)u(t) + q(t)

Cancelling the AΦ(t)u(t)s from each side gives:

Φ(t)u ′(t) = q(t)

u ′(t) = Φ(t)−1q(t)

u(t) =
∫
Φ(t)−1q(t)

Thus, x = Φ(t)
∫
Φ(t)−1q(t).

3.8 More Fourier Series

3.8.1 Convergence

A few definitions first:

piecewise continuous f is piecewise continuous over an interval I if it has finite jump
discontinuities over I, and the left and right-sided limits at each discontinuity exist
and are finite (this rules out something like tan, where the limits are not finite).

piecewise smooth f is piecewise smooth if f ′ is piecewise continuous.

The Fourier series for f is guaranteed to converge over interval I if f is piecewise smooth
over I. At a discontinuity t0, the Fourier series takes the value f(t0−)+f(t0+)

2 , i.e. the mean
of the values the function takes when approaching the discontinuity from either side.

18



3.8 More Fourier Series Felix Prasanna

3.8.2 Termwise Differentiation

If f is continuous and f ′ is piecewise smooth over I, then the series obtain by termwise
differentiation of f’s Fourier series converges to f ′ on I.
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